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ABSTRACT 

Theoretical and computational aspects of the three- 
move discrete evasion game are presented. An Evader 
strategy is given that yields an upper bound of. 2890 for 
the game-value, and a Marksman strategy is given that 
yields a lower bound of. 2842. A particular form for the 
Marksman strategy is presented whichdepends on r bits 
of information, and it is proved that this type of strategy 
is near -optimal. The results are also applied to the two - 
move game, which was solved earlier by other workers. 
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I.   INTRODUCTION 

Game theory, the mathematical approach to conflict situations, has been applied t< 
many operations research, systems analysis, and decision making problems since its 
development in the 1930s.   Of particular significance to many military operational 
problems has been a class of games known as evasion games, in which one or more 
players attempt to evade others.   The game to be discussed in this paper has just two 
players, a Marksman and an Evader.   The Evader moves about in a grid of equally 
spaced points in an unbounded straight line.   At each time step, say each second, he musi 
move one unit to the right or one unit to the left.   The Marksman observes the Evader's 
motion for as long as he likes and then fires his single weapon, which takes exactly tiiree 
seconds to reach the point at which the Marksman aimed.   The payoff to the Marksman 
is   1  if the weapon hits the Evader, i.e., if the Evader's position coincides with that of 
the weapon when it arrives.   The payoff is  0  otherwise.   The Evader cannot see the 
weapon in flight, and is only told after the fact that the play of the game is over. 

This is a much simplified version of a class of military problems such as the follow- 
ing (reference (3)). 

"A ship in midocean is aware of an enemy bomber's presence, but the 
plane is too high for precise detection.   The ship is interested only in 
not being hit; it has no offensive means.   The plane has one bomb and 
we suppose — to avoid extraneous factors — that the bomber's aim is 
excellent.   The ship knows this, but knows nothing about when or where 
the bomb will be dropped until after detonation.   It is to maneuver so as 
to minimize the hit probability.   We suppose that its only kinematic 
restriction is that it travels with a fixed speed v .   There is a time lag 
T between the bomber's last sighting of the ship and detonation.   Thus 
the bomber must aim at an anticipated position of the ship." 

The problem for the idealized game is to find optimal mixed strategies for the two 
players, in the sense of game theory.   So, if a and  p denote possible strategies for 
the Marksman and Evader, respectively, and if  M(o-, p)  is the expected payoff to the 
Marksman, the problem is to find  a , p , so that for all allowable  a , 

M(o, po) £MOo,po)    , (1) 

and for all allowable   p , 

M(aQ, po)sM(ao,p)    . (2) 

The value of the game is 

v = M(ao, po) 

and the inequalities (1) and (2) assert that when the Evader uses the strategy p   , then 

no matter which a is chosen by the Marksman, his payoff will not exceed v , and when 



the Marksman uses the strategy a   , then no matter which p  is chosen by the Evader, 

the payoff to the Marksman will be at least v   .   (The payoff is the probability of hitting 
the Evader, which the Marksman tries to maximize, and the Evader tries to minimize.) 

We do not have  the solution, but we shall present a strategy for the Evader that will 
assure him that the Marksman will never achieve a payoff more than   .289025, and a 
strategy for the Marksman that will assure him a payoff of   .28423 .  We can therefore 
assert that the value v  satisfies 

28423 svi .28903      . (3) 

The present game has been called the 3-move game since the Evader makes 3 moves 
while the weapon is in flight.   The 2-move game has a corresponding definition and was 
practically solved in reference (1) and reference (3), but an optimal Marksman's strategy 
was not given until reference (2).   At the end of this paper, the 2-move game is con- 
sidered and the same sort of strategy is applied there as is suggested for the 3-move 
game. 



II.   A SAFE EVADER STRATEGY 

The form of the game makes it clear that there is right-left symmetry; any Evader 
path, which is a sequence of rights and lefts, is equivalent to the same path with lefts 
and rights interchanged.   Accordingly, each such path can be described as a sequence of 
straights and turns*, except for the very first move. 

The best strategy that we have found for the Evader can be described in terms of the 
conditional probability of moving straight given the "state"  S  of the previous moves.   A 
straight is denoted by  1  and a turn by 0 .   If the previous Evader moves to the current 
time  n are 

-Vi0 ■ 
i.e., the last move was a turn, we say that the "system" (or the Evader) is in state 
S=l .   If the previous moves are 

k-1 

...0 1 1...1    , (4) 

we say the state is   S = k   .   Equivalently, the Evader is in state  S = k   if the last  k 
moves have been to the right (or to the left), but not the last (k+1) . 

For the first move, the Evader can choose  S  to be any k > 1 . 

If at time n , the Evader is in state S = k , then at time n+1, the new state can be 
k+1  or   1, and nothing else.   The probability p.   of moving straight is the only quantity 

that the Evader needs for his next move,   k=l, 2,3,...   .   The process which consists 
of all possible random paths is a first order Markoff process in the states   S , but is not 7fr 
a finite order process in terms of the previous bits  (0's and l's). 

Suppose that at time n the Evader is in state k . At time n+3 , there are exactly 
four places where the Evader can be, which are called W=0,1,2, or 3. These positions 
depend on the moves   Y    ., Y    2> Y    «  according to the following table. 

W 

1 
2 
1 
0 
2 
1 
2 
3 

*A straight is a left followed by a left or a right followed by a right.   A turn is a right 
followed by a left or vice versa. 
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Vi Yn+2 Yn+3 

0 0 0 
u Ü 1 
0 1 0 
Ü 1 1 
1 Ü 0 
1 0 I 
1 L Ü 
1 1 1 



The meaning of the Ws is as follows.   Suppose the Evader moved to the right at 
time  n, and the next three moves are  0, 1, 1, i.e., turn, straight, straight.   So the 
Evader goes left, left, left, and his position is three units back from the position at  n . 
"Back" because he was moving to the right at  n .   This outcome is called W=0 .   The 
outcome wherein the future position is one unit back is  W=l; one unit ahead is  W=2 , 
and three units ahead is  W=3 .   The construction of the W -table above follows from these 
remarks. 

The Evader, who is in state k  at time  n , can calculate the conditional probabilities, 
given S = k , of the 8 possible 3-bit groups that represent his next three moves.   Two 
of them and their probabilities are listed. 

Vi Yn+2 Yn+3 Pr W 

0 0 1 u-ppa-pppj 2 

1 1 0 PkPk+l(1_Pk+2) 2 

By going through the complete list of  8, and picking out the one for W=0 , one for W=3 , 
three for W=l , and three for W=2 , we find: 

Pr(W=0 |s=k) = (l-pk)p1p2 (5) 

Pr (W=l | S=k) = (1-p^ Pl (l-p2) + (l-f^Kl-Pj) + pk (1-Pk+j) Px (6) 

Pr (W=2) | S=k) = (l-p^a-pp px + Pfc (l-Pk+iKl-Pi) + Pj, Pk+1 d-Pk+2) <7> 

Pr 0V=3 | S=k) = ^ p^ p,+2 . (8) 

These equations hold for k=l, 2,3,... 

Suppose the Marksman guesses  W for W  when S = k   .   Then his expected payoff 

wül be  Pr (W = $ | S = k) .   Let 

v* = sup sup Pr(W=$  |s = k)     . (9) 

k      $ 

Then, no matter what the Marksman does, his payoff will not exceed v* , which depends 
on Pi»P2»P3  

In table 1, a set of  p.'s  is presented that defines the best Evader strategy that we 

have been able to find.   In table 2, the corresponding values of  Pr (W = W | S = k) are 
given, from the equations (5) to (8). 



TABLE 1 

A SAFE SET OF p^s FOR THE EVADER 

\ 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

.692900 .  3 07/0 

.624674 .37JJJ 

.667745 . \yn-<ä> 

.651372 ■>W»fc3 

.662413 .%37M 

.658589 ,4<*Hi. 

.661352 ,-iS8fc«< 

.660473 ,3**53 

.661162 IttoH 

.660963 .si^oa 

.661136 , 33*81 

.661092 .535*' 

.661135 .MSftL 

.661125 .3bft*7 

.661136 3^»Ä* 
t» 

TABLE 2 

tf 

Pr (W = $ | S = k) USING p^s OF TABLE 1 

1 .132924 .289025 .289025 .289025 
2 .162455 .276818 .289025 .271703 
3 .143812 .279046 .289025 .288177 
4 .150899 .275909 .289025 .284166 
5 .146120 .276335 .289025 ..288520 
6 .147775 .275524 .289025 .287675 
7 .146579 .275596 .289025 .288799 
8 .146960 .275386 .289025 .288630 
9 .146662 .275394 .289025 .288919 

10 .146748 .275339 .289025 .288888 
11 .146673 .275339 .289025 .288963 
12 .146692 .275324 .289025 .288959 
13 .146673 .275323 .289025 .288978 
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We were led to the Evader strategy above by examining 2nd, 3rd, and 4th order 
processes and solving approximately for  max P (W |S) with the aid of a nonlinear pro- 

S,W 
gramming algorithm.   The "optimal" conditional transition probabilities suggested that 
they depended not on all the previous bits in a 4-bit state, for example, but only on the 
state S  as defined above.   Using this statement as a hypothesis, the  p's  and P(W|s)'s 
of table 1 and table 2 are easily found. 

-6- 



III. THE FORM OF THE MARKSMAN STRATEGY 

For ease of exposition, we suppose here that the Marksman uses a strategy that 
depends only on the Evader's most recent four straights and turns, the last four bits 
of information before firing. (In terms of lefts and rights, this requires five bits of 
information, of course.)  Let straights be denoted by l's and turns by O's, and let 

Yl'Y2'Y3 Yn*** 

We 

be a sequence of   l's and O's, i.e., a possible Evader path. 

Let N  be a larger integer and consider the part of the path from  Y. to YN 

are concerned with the numbers  n..  of transitions from state  i to state j,   where  i 

and j  stand for any 6-bit group, from 000000 to 111111, of which there are 2   =64.   By 
a transition, we mean an ordered pair such as 

( (Y15, ...,Y20), (Y16, ...,Y21) )      ; 

the first possible transition is from   (Y.,..., Y6)  to the next state, and the last one is 

from  (YN /,..., YN ,) to the next state.   So there are N-6 transitions under considera- 

tion.   But with N very large, there are essentially N  transitions. 

For each of the 64 states  i , there are exactly 2 possible following states j , deter- 
mined by the value of the next observable y-bit.   Let 

and 

mi=?nji 

Then k.   is the number of times there is a transition* out of state  i , and  m.   is the 

number of transitions into state  i .   Apart from the very first and the very last transition, 
every transition into state  i is accompanied by a transition out of state  i .   It follows 
that for each  i , 

ki = mi 

that is, 

E^-En^     . 

*A transition from i to i is to be counted also. 

-7- 



apart from a negligible error from the end effects.   Furthermore, 

Ein   =Ik  =N   , 
i    j      1J     i     l 

essentially.  We put 

n.. 

Pij = ^     ' 

So p..  is the proportion of times there is a transition from  i  to j .   We have, for 

each i , 

I>ij = £pji ' 
j       J 

and 

? pir1 • 
Suppose that the Marksman fires at a time t between 4 and N-3, so that y i»y2» • • •» 

y  have been observed.   By our assumption, the Marksman can make use of the knowledge 

of the last 4 y's only; if y .,y2,.. .y   4 were changed to any other y's, the behavior of 

the Marksman firing at time t would be unaltered.   It is convenient to consider the 
transition from the state i = (yt_3»yt_2» • • ,VH.2^ 

t0 t^le f°^owin8 state j = (yt_2» 
y   ,,... ,yfv.->).   This enables us to calculate the expected payoff to the Marksman in 

terms of the quantities or.. and rr     which are under the control of the Marksman and 

which will be described presently, and of the p.., which are under the Evader's control. 

The Marksman, who is about to fire at time t,  knows the last four bits, say 
S = (y„ o.y,. o.y,. ,.yJ.   There are 2*=16 such S's .   The position W of the Evader 

at time t+3, relative to the position at t will be one of four possibilities, as a function 
°f yf+i'^fj-o'V +q *   Tke ft"1^011 is given in the following table which is the same as that 

of section II. 
yt+l'yt+2'yt+3 

0 0 0 1 
0 Ü 1 2 
0 1 0 1 
0 1 1 0 
1 0 0 2 
1 0 1 1 
1 1 0 2 
1 1 1 3 

-8- 



The Marksman, firing at time  t , will fire randomly at W=0,1,2,3 with probability 
«SQ, ..., <*S3   .   Of course, 

V- v * l 

The Marksman will require a   16x4  table of o's , the rows indexed by S , and the 
columns by W . 

Now, we know that there is a transition from  i = (yt_3»...»yt+o) t0 J = ^r-2' * *" 

y   o)   .   The state i  contains enough information for us to determine S , viz., the first 
4 bits of i   .   So  S  can be regarded as a function of i   .   Also, the state  j  enables us 
to determine  W ; we simply look at the last 3 bits of j  and then consult the W -table given 
above.   Accordingly,   W  is a function of j .   The result is that we can write 

aij = aSW 

(with an abuse of notation that is perhaps preferable to writing 3qW) if and only if S  is 

the correct value,   S(i) , and W  is the value,   W(j) . 

In the transition from  i  to j , the Marksman who fires here, receives   1 unit if 
the W  he fires at coincides with W(j) , and 0  otherwise.   His expected payoff is there- 
fore  or™, = a     .   If the Marksman chooses  t uniformly in the large interval from   1  to 

N  (essentially), then the transition from  i to j  that arises occurs with probability 
p.. .   The expected payoff to the Marksman is, accordingly, 

M (a, p) = £ a^ Py    . 

But the Marksman has a better procedure, still using only the last four bits. 

The correct strategy for the Marksman, assuming for definiteness that he can only 
use the last four bits is to choose the   16x4 o-w  table appropriately and also   16 proba- 

bilities  IT,, .   His procedure is the following: 

a) Choose t uniformly between  1  and N , and observe  S , the last four bits. 

b) With probability TT_  fire.   If he fires, he aims at W  with probability a_w, 

and the play is over.   With probability   1 - TTL , the Marksman starts over, i.e., goes 

back to  a), resetting his clock to 0, but the y sequence now begins with   y   . . 

When each TT„ > 0 , the Marksman who follows this procedure will fire eventually 

with probability  1 .   So his payoff can be calculated as his expected return, given that 
he fires the first time, which is the same as when he fires the kth time, for any k . 

-9- 



The probability of a transition from i to j , when t is chosen uniformly in a large 
interval, is  p.. .   The probability of firing given (i,j)  is  TTC where  S = S(i) .   So the 

probability of firing the first time is 

2>iPij   . 
ij   l   1J 

in which we have written  TT.   for  TT„  with the understanding that 

if and only if S = S(i) , the first four bits of  i.   The payoff, given a transition from  i to 
j  and a fi: 

therefore 

j  and a firing, is  a..   .   The expected payoff to the Marksman under this policy is 

S'ijVij 
M(«, TT;P) = ^       . (9) 

if     i  PiJ 

The solution of the game with this payoff is discussed in section IV.   We will prove 
that there is a number v* , and a near-optimal strategy a*     and  TT*   for the Marksman, 

and a strategy  p*..   for the Evader with the following properties: 

1) If the Evader uses  p*.. , then no strategy for the Marksman that uses only 

the last 4 bits can yield him a payoff exceeding v* .   It is not required that the Marksman 
restrict himself to a policy of the type that leads to equation (9) above.   So long as the 
information available to the Marksman is restricted to the last 4 bits, he cannot achieve 
more than v* . 

2) If the Marksman uses the policy described above with a* and TT*. , then 

no matter what strategy is followed by the Evader, pure or mixed, the Marksman will 

obtain a payoff equal to or greater than v* - 10      , say. 

The value v*  and the strategies  (a* , TT*)  and p*  depend on the number of bits 
available to the Marksman.   We have been talking about 4 bits, but evidently everything 
in this section can be reread with 5 bits or  r bits instead of 4 .   If the Marksman can 
use  r bits, the appropriate strategy for the Evader will depend on r+2 bits.   If v* 

denotes the value when r bits are used by the Marksman, we have clearly,   v* <:v*' 

for every r , and the value of the original game is 

v" = lim v* 

■10- 



We have been unable to obtain this limit.   The best we can say with certainty is that 

.28423 s vs. 28902    . (10) 

Let us note that when the Evader must consider  (r+2)   - bit groups, the number of 
quantities  p..   that must be found is twice the number of i - states, i.e., 

r+2       r+^ 
2x2       = 2 .   For r=4, this means 128 p's, and for r=5, we would need 256 p's.  In the 
latter case, we would require the solution of a few linear programming problems with 
tableaus of 257 rows and 258 columns, which we declined to pursue.   Our lower bound of 
.28423  is the assured payoff to the Marksman when he uses a strategy which contains an 
amount of information intermediate to 4 bits and 5 bits and will be discussed below. 

■11- 



IV.   CALCULATING A NEAR-OPTIMAL STRATEGY 

We start here with the payoff equation (9) of the last section, 

Ect.. TT. p.. 
IJ   i *ij 

M (a, TT, p) =  iL 
Z  IT.   p.. 
ij     i    iJ 

For definiteness, the reader may think of i as a 6-bit group,   S(i) is determined by 
the first 4 bits of i , etc., as in the last section.   The a   = a       are non-negative with 

« 
aSW = 1 

for each S .   The   TT   = ru  are between 0 and 1.   The  p..  are non-negative with 

FVf pü 

for each i , and £ p.. = 1 .   We will show here how this "4-bit" game can be solved; 
ij 

in principle the "r-bit" game goes the same way. 

Let p..  be an allowable set of p's for the Evader.   If  i  denotes a 6-bit group, then 

p..   is precisely the probability of a 7-bit group, whose first 6 bits correspond to  i . 

Let S    be any 4-bit group.   Then the probability that S    arises can be obtained by 

adjoining 3 more bits to S    in the 8 possible ways, to get eight 7-bit groups and then 

summing over the 8 appropriate  p..'s.   We have 

Pr(s
0) = ^{pij:S(i) = So}   ' 

a sum of 8 terms.   If W    is a possible value of W = W(j) » then the probability that in 

all possible 7-bit groups, we have  S(i) = S    and W(j) = W   , is simply the sum of all the 

p..   suchthat S(i) = S    and W(j) ■ W     .   Such a sum will contain  1  term for W   =0 ij w      o w o o 
or W   = 3 : it will contain 3 terms if   W   = 1 or W   = 2 , as can be seen from the W-table o oo 
of the last section. 

■12- 



Consider the numerator in equation (9).   Since  a.. = a™,  and n. = TU , it is 

convenient to hold S, W   fixed, then sum over  p     to get  Pr(S,W),   etc.   We obtain 

pij "i Pij = s^sw "s Pr<s-W> ' £"s £>sw Pr (wls) Pr<s> • 

Since 

V^o      = 1 for each S  , 

we have 

«sw P(W |S) 5 max Pr(W |S)    . 
W 

Therefore, 

£0^. TTj p.. s £ TTS Pr(S) max Pr(W |S) 

ij S W 

For the denominator in equation (9), we have 

£TT p   = £TT   Pr(S) 
ij J      S 

We conclude that 

£TT   Pr(S)max Pr (W|S) 
S                    W 

M (a, TT; p) * ^   ^ Pr (S)  

and finally, 

M (O,TT; p) «max max Pr(W|S), (11) 
S      W 

valid for all allowable  or.., "j» Pi»   . 

The r.h.s. of equation (11) depends on the  p..  but not the at's or Tfs   . 

•13- 



It is also clear from the relations preceding equation (11) that, if p..  were 

announced to the Marksman, he could achieve the payoff 

maxPr(W|S) (12) 

by properly choosing a.,  and  n.   .   The conclusion we draw is that the correct strategy 

for the Evader in our present context is to choose  p     so that the number (12) is smallest 

possible.   These remarks provide the motivation for the following considerations. 

Let  p= [p..)   denote the vector with components  p.. , wherein the  (i,j) pairs — 

128 of them in the present case — have been indexed from   1 to 128  in any convenient 
manner.   Let v  be an arbitrary real number between 0 and 1 .   For each v , define 

D(v) = jp : all the p   * 0 , 

T J    J   J 

VS°'W°:s(SsPT%^°}   • S(i)=_ o o 
W(j)=Wo 

For each v, D(v)  is a compact polyhedral set, i.e., a set defined by linear inequalities. 

(Note:   For any p , if p e D(v) , then 

which follows by summing over  i .)   We have  D(0) = 0 , the empty set, and D(l) f 0 . 
Also D(v)  is increasing with v .   It follows that there is a v* such that  D(v) f 0  if 
v >v*  and D(v) = 0  if v <v* .   Let v   = v*+2-n, n=l,2,3,...   .   The sets   D(v ) 

n n 
form a decreasing sequence of non-empty compact sets, and there is, accordingly, a 
point  p*  that belongs to all of the  D(v )   .   For such a point  p* , we have 

■14- 



V S |W :    y   n*    -v     Y    D*    <0 

W(J)-Wrt 

for each  n , and therefore we can take the limit as n*«° .   The result is that p* eD(v*) , 
as we would expect. 

We are ready to prove one half of the claim following equation (9) of the last section. 
The number v*  and the Evader strategy   {p*ti} = P*  are as described in the previous 

paragraph.   All that is needed is to show that when the Evader uses  p* , and the Marks- 
man is restricted to the information contained in any observable  S   , the Marksman 

cannot achieve more than v* .   But this follows since  p* eD(v*) , so that 

Pr(S ,W ) 
V So'Wo:   -TrTirr *v* ' Ue"   Wo 'So> *v* <13> o 

for every W    and every S    for which  Pr(S ) f 0   .   If  Pr(S ) = 0  for some  S   , the 

Marksman will never observe  S   , and there's no problem.   (In the next section, we show 

that  P(S ) > 0 if p eD(v*) .   If the Marksman observes  S    and fires, his payoff cannot 

exceed v* by equation (13). 

We turn now to the problem of calculating v*  and near-optimal a.,  and  rt.   for the 

Marksman.   To calculate v* , or a close approximation, we need only form some objec- 

tive function £ e.. p.. with e.. s 0 and minimize this function subject to the constraints 

given above in the definition of D(v) , for fixed v .   The  LP (linear programming) 
algorithm yields an "optimal"   p in case  D(v) f 0 , and gives another indication when 
D(v) = 0 .   So, for example, we can take  A=.25  and  B=.30 , take the midpoint as v , 
and use LP.   If D(v) = 0, replace A by v ;  if D(v) + 0 , replace B by v ; then do it 
again.   After 8 or 9 repetitions, the interval (A,B) is very small and we have a good 
approximation to v* . 

Now we shall modify the previous LP problems slightly, to get a*.,  and  rr*   .   Let 

g(P) = E etj Pij 

be the function to be minimized where   e.. ^ 0 , and, in addition,   c     depends only on 

S  and W .   So   c   = e^   if and only if S(i) = S(k)  and W(j) = W(8) .   Define 

ES=^ ^W    * 
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Let v*v*   .   The constraints we shall use here are, besides  p.. iO: 

V  i-EPy-pjiSO 

£pir 
ij 

where   E. = Ec when the first four bits of  i  comprise  S .   Also, 
1 3 

S(iR0   «        S(i)=So   « 
wo)=wQ 

Since v 2 v* , the solution of this LP problem exists.   By the duality theorem, the dual 
problem has a solution, and the value of the maximum in the dual is the value of the mini- 
mum in the primal problem. 

The dual problem is obtainable as follows.   We introduce the Lagrange multipliers 
<f»  * » Xsw  corresponding to the primal constraints, and form the Lagrangian function: 

^pijPiJ-S^Pji-^ij) 

-'(pijV1) 

> W   W   S(i)=S    1J     S(i)=Srt  
1J/ s 

o  o 
W(j)=WQ 

We rewrite this by collecting together all the   p     terms: 

^pJjfVV1*-* Ei"V   VXij)+«    ' 
where 

Ai = S *S W W     o 
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if and only if 

S(i) = S   and W(j) = W    .   The dual problem is to find 

max      (K) 
cp, K,X 

subject to the constraints, besides   cp^0 ,  00, X > 0 : 

V ij: e4j - cp. + cp. - K E. - v ^ + Xy * 0   . 

Let  cp* , K * , X*  denote a solution to this problem.   (These values are available as soon 
as the primal LP problem is solved.) 

Now let  p .  be any allowable set of p'sfor the Evader in our context.     The only con- 

straints are:   p., * 0 , zip.. = z^ p.. , and J]p.. = 1 .   Multiply each dual constraint 
ij j    iJ     j     Ji y    ij 

above by p..  and sum.   We get 

y>.. p.. - K*Y E. p.. - vY" A*, p.. +Y, X* . p.. *0 
^ i) Hij ij     l   *J       ff      1   li    ff    {i   *J 

because the terms involving  cp*.   cancel. 

Let  or be the smaller of  fC *  and v .   Then we obtain from the last relation: 

Ep   (e   +X*)*o-£p   (VAV    , 
ij ij 

valid for every allowable  p..   .   Finally, if for each i  (for each S, really), E. +A*. > 0 , 

we can divide and get: 

*j  J   J -L * 0 (i4) 
EPij<Ei + AV 

for every allowable  p..   .   The last few paragraphs may be summarized thus: 
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Let   €..  be the non-negative coefficients of the "objective" function   7^*^ Pi-  and let 

e     depend only on S and W .   Let  E„  = X^™.  and replace the constraint £p.. = 1 

by Yj3.- E. il  in the definition of D(v) .   Let v ^ v* .   Solve the LP problem of mini- 

mizing £]€.. p.. , and let  K'*  be the value of the minimum.   Let   X*oW  be the appropriate 

dual variables, and put  a = smaller of   K*  and v,   and let A*   = £\*sw .   Then 

equation (14) holds for every allowable  p.. , provided that  E„ + A    >0  for each  S . 

At this point, we can set 

"sw 
6SW     * SW 

for each  S , W , and 

TT     = 

Es+/l*s 
"s max (E„   + A« )       * 

S          o       J o 
i 

'o 

The* £«SW = 

w 
' 1 , and each nssl 

and equation (14) becomes 

XX 
V 

i °ij "i 

Kij   l 
1J 

for all allowable  p    .   Comparing this with equation (9), we see that a    and TT   define 

a strategy for the Marksman that will assure him the payoff  a .   (Therefore,   asv*, 
so that   <r = min (K* ,  v) = K* .)  These remarks suggest an iterative computation pro- 
cedure for getting better and better a's and IT'S, which was found to be extremely effective 
in getting near optimal strategies. 
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V.  EXISTENCE PROOF FOR NEAR-OPTIMAL STRATEGIES 

To prove the existence of a pair a*, TT* that will guarantee a payoff of v* - 10 , 
we proceed as follows. We consider, in a manner somewhat different from previously, 
the non-linear programming problem of finding an allowable   [p..)   for which max max 

li S      W 
P(W |S)  is as small as possible.   For this purpose, we define 

E = {< p, v > : p e D(v) } 

where  D(v)  is as defined above, and we put 

f(p,v) = -v 

for  (p,v) e E .   The problem is to get      max    f .   Since  E  is compact, the maximum 
(p,v)eE 

exists.   If (p*, v*)  is a point of  E  where the maximum occurs, we see that v*  is the 
same as our previous v* .   The present considerations, however, enable us to invoke 
the Kuhn-Tucker theorem.   We note that the constraints on (p,v)  are precisely those of 
the definition of D(v) , except that v   is now regarded as variable.   The Kuhn-Tucker 
theorem says that, provided  E  satisfies a mild regularity condition, which we suppose 
to be true, there are Lagrange multipliers   p.. , CD. , a, X~w » all * 0 (except possibly 

a) , such that at the point  (p*, v*) in  E , the Lagrangian 

J = - v + I>ij Pij - 2>ife>ij - EPJI) - ofcpij -1) 
ij  j  j   i    xj   j   j ij 

- £   *s w ( £     pii "v £   p«) S W       o   o\sfU=S      1J      S(i)=S     1J/ 
O    O * '      0 

W(j)=WQ 

has a zero gradient, i.e.,   dj/dp.. = 0 for every  (i, j) , and  dj/dv = 0 .   We form all 

these derivatives and conclude that 

and 

where 

V(Lj) : cr + cpi -co  + X.. -v* A. 5 0 

SW^W 

Ai" As"£*sW w 
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Furthermore,   a= 0  because the constraint £pr = 1   could be replaced by ^jp.. = 2 
ij  1J ij    J 

or any positive constant without changing v* .   As we did earlier, we can now multiply 
each of the  (i,j)  inequalities by  p..  and obtain 

vpir£pij Vv*£Aipij*° (15) 

ij ij 

provided £p.. = YjP-   *or eacn  i •   We ^now tnat not aU tne ^s are zero because of our 
j    *J     J    J1 

relation    2- AQP*(S) = 1 » above.   However, it is still conceivable that for some allow- 
S    b 

able   {p..} , £ A. p.. = 0 , in which case we cannot be satisfied with our   X~w . 
•*      ij •* 

In this event, we restrict attention temporarily to  D(v*) .   We can observe quickly 

that if p e D(v*) , then for every S ,   P(S) =     £   p.. >0 .   For if  P(S) = 0 for a four- 
S(i)=S   1J 

bit group  S , e.g.,   S = 1101 , then the state  S = y HO   will have some   p(§ | W) :>l/3>v* 

because  W=3  cannot follow  § .   (If S = 1100 , then W=0  cannot follow  £ .)  But 

P(S |W)>v*  is impossible for  p e D(v*) ,   and therefore   P(y 110) = 0  for  y = 1 or 0 , 
i.e.,   P(110) = 0.   Similarly P(11) = 0,   and  P(l) = 0 .   Therefore all the  p.. = 0 

except for  i = (000000) , and clearly,   p 4 D(v*) , a contradiction. 

So if  p e D(v*) , we have ]T A. p.. >0 , and since  D(v*)   is compact, the smallest 
ij        1J 

such sum exists and is strictly positive.   We have for  p  in  D(v*): 

Z-   i"ij 
ij 

by equation (15)  and therefore also, equality.   We can now change the   X.. to   X.. + e 

with   e > 0  and small.   The corresponding quotient is, for  pin  D(v*) , 

£(Xij + e)pij       v*SAlPij+e 

£(A. + 4e)p      "EVi^4«       ' 
ij tr 

and with £ A, p..  bounded away from zero, we have shown:   For every  n >0 , there is 
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a "vector"   {X<,w}  with strictly positive components such that for every p in D(v*) , 

• >v* - n iL_  ^v* 

5 -^ 

Finally, this   {XoW}  can be converted to the new one   {XcW + ^*cw^  **y t*ie Proce^ure 

described following equation (14).   We then obtain a„y,  and  TT„   such that for every 

allowable  p , we have 

Fn. a., p.. 

5Zn- p-- 

This completes the proof of the existence of near-optimal strategies  (a*, TT*) for the 
Marksman in the 4-bit game, and the same proof holds for every r-bit game. 
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VI.   THE 4-1/2 BIT GAME 

The values  v*  for the 3-bit game and 4-bit game are about   .2812 and .28395 , 
respectively.   Since Matula, reference (4), had already proved the existence of near- 
optimal strategies for the Marksman with payoffs arbitrarily close to  23/81 = .28395, 
and the 5-bit game appeared too large for the computer, it seemed that our procedures 
were doomed to be dominated by Matula's strategy.   However, for the 2-move game, 
our procedure yielded a payoff of   .38193 (the value of that game is known;  v=l/2 (3 - /S) = 
.38197), while the corresponding Matula strategy yields   3/8 = .375 , which appeared to 
promise some hope for our procedure. 

More important was the observation that the Marksman strategy in the 2-move game 
depended not on all the information in the last 4-bits, for example, but only on the number 
k  of consecutive O's (turns) to the most recent bit, i.e., the appropriate state  S  is de- 
fined to be  S = k  if the last k  bits are "0" , but not the last (k+1), k=0 or 1 or ... . 
This type of state was not useful for the 3-move game, but the following was. 

The Marksman uses the state  S=(S~, e^O , defined thus:     e' is the last observed 
bit,   e is the next to last; 'S e [0,1,2, 3} , S  is the largest number ^ 3  of consecutive 
O's  at the end after deletion of the 2 bits   e, e' .   For example, if the last 5-bits are 
00010 , the state is   (3,1,0); for 11001, the state is (1,0, 1) .   There are 16 such states 
S .   The Marksman strategy  (ow and TT_)  depends on these 16 states, which contain 

less information than 5-bits.   We call the game with this kind of Marksman strategy, the 
4-1/2 bit game. 

The Evader's answering strategy is a set of  p..'s, in which each  i  is an ordered 

triple   (S,  e", e*") where  S is a "Marksman state," of which there are 16, and e",  e"' 
are the next 2 bits of the Evader path.   So the set of Evader states contains 64 elements, 
and there are 128 possible transition pairs   (i, j).   Everything in the last three sections 
applies to the present game with little or no change.   In the calculations, the only part 
that requires changes is the indexing of the (i, j)'s , and the handling of the constraints 

£Pii " LPji * ° ' for each  i • . . 

We found that v*   for this game was   .28426  with a possible error in the 5-th place 
of a couple units.   More to the point is the following near-optimal strategy, which guaran- 
tees the Marksman the expectation   .284227 . 

In table 3a, the 16 "'s are given in the order of the states   S   ; the first four states 
are   (000), (001), (010), (011) ; the last four states are (300), (301), (310), (311) .   If 
S = (1,0,1) , then   ru = .382898 .   In table 3b, the 16 rows correspond to the states   S 

and the four columns correspond to  W=0,1,2,3.   The Marksman never fires at W=0 . 
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TABLE 3a 

NEAR-OPTIMAL   Tig 

.457108 .141443 .536567 .141443 

.480058 .382898 .536567 .141443 

.157777 .254466 1.000000 .141443 

.138309 .371974 .670319 

TABLE 3b 

.141443 

NEAR-OPTIMAL  a, 

0.000000 
0.000000 
0.000000 
0.000000 

0.000000 
0.000000 
0.000000 
0.000000 

0.000000 
0.000000 
0.000000 
0.000000 

0.000000 
0.000000 
0.000000 
0.000000 

0.149888 
0.215687 
0.302321 
0.215687 

0.271635 
0.289874 
0.302321 
0.215687 

0.310865 
0.267940 
0.263036 
0.215687 

0.354622 
0.183297 
0.271040 
0.215687 

SW 

0.458426 
0.500000 
0.377268 
0.500000 

0.395957 
0.394900 
0.377268 
0.500000 

0.627440 
0.425974 
0.383736 
0.500000 

0.645378 
0.449359 
0.387236 
0.500000 

0.391686 
0.284313 
0.320411 
0.284313 

0.332408 
0.315225 
0.320411 
0.284313 

0.061695 
0.306086 
0.353228 
0.284313 

0.000000 
0.367344 
0.341724 
0.284313 
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The guaranteed payoff of   .28423 that the Marksman can depend on when he uses 
the strategy given above is the precise value that arises when the Evader uses, for 
example, the periodic path 

... 100000 ... 

with period  6  (1 = straight, 0 = turn).   We can verify this as follows.   There are 6 states 
S  that the Marksman can observe and they arise with equal probability.   Starting at the 
point where 5 turns are observed, the states and corresponding Ws are: 

and 

(3,0,0) 2 

(3,0,1) 1 

(3,1,0) 1 

(0,0,0) 1 

(1,0,0) 2 

(2,0,0) 1 

From tables 3a and 3b, the corresponding a's and n's are: 

SW TTn 

.645378 .138309 

.183297 .371974 

.271040 .670319 

.149888 .457108 

.395957 .480058 

.310865 .157777 

The weighted average of these a's with the weights   TT is   .28423 . 

The reader may wish to test the payoff of   .28423  by checking, in a similar manner, 
the results when the Evader uses other periodic paths. 
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VII.   THE TWO-MOVE GAME 

The theory of the r-bit game (wherein the Marksman makes use only of the most 
recent  r observed straights or turns) carries over with only few changes for the 2-move 
game.   If the Marksman state is  S , then the Evader state is  i = (S, e) , where   e is 
the bit following the last bit observed by the Marksman.   So, if S  consists of 4-bits, 
the Evader state  i  is 5-bits, and the  (i,j)  transition is defined by 6-bits.   The W-table 
for this game is: 

e e' _w 
0 0 1 

l) l 0 

1 0 1 

1 l 2 

We found that the near-optimal Marksman strategy,   a-,  and  TT„ , depended only 

on the number k, where  k = largest integer  m  such that "the last  m  bits of the 
observed Evader path are  0"   is valid.   So we then took the typical Marksman state  S 
to be such a k , with 0 < k < 15 .   We interpret S = 15  to mean that there are 15 or 
more 0's   in the most recent Evader path history.   Again, the typical Evader state has 
the form  i = (S, e) . 

The best Marksman strategy we found here guarantees the Marksman a payoff of 
.381934 . The true value of the game is v = 1/2(3 - JT) = .381966 . We present the 
rr„  and a„„,  in tables 4a and 4b.   The first  TU   is for S = 0  and the last is for S " 15 

etc. 
"S —~ "SW 
The first row of the 

in tables 4a and 4b.   The first 

a table is for  S = 0 

TABLE 4a 

NEAR-OPTIMAL  nc 

002507 .005603 .010605 .018675 

031672 .052535 .085848 .138572 

220782 .345664 .526395 .762962 

999554 1.000000 1.000000 1.000000 
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0.000000 
0.000000 
0.000000 
0.000000 

0.000000 
0.000000 
0.000000 
0.000000 

0.000000 
0.000000 
0.000000 
0.000000 

0.000000 
0.000000 
0.000000 
0.000000 

TABLE 4b 

NEAR-OPTIMAL a SW 

0.618061 
0.552826 
0.527910 
0.515848 

0.509345 
0.505634 
0.503448 
0.502136 

0.501341 
0.500856 
0.500562 
0.500388 

0.500296 
0.500296 
0.500000 
0.500000 

0.381939 
0.447174 
0.472090 
0.484152 

0.490655 
0.494366 
0.496552 
0.497864 

0.498659 
0.499144 
0.499438 
0.499612 

0.499704 
0.499704 
0.500000 
0.500000 

As an example, let us apply this strategy to the following Evader path, which is 
periodic with period 5 (1 = straight, 0 = turn): 

... 10010   10010 ... 

The states   S , which occur with equal probability, and the corresponding Ws are: 

W M = a. SW 
P= nr 

(1 1 .618061 .002507 

1 l) 0 .005603 

2 1 .527910 .010605 

0 0 0 .002507 

1 1 .552826 .005603 

The weighted average of the   Ms with weights   P  is   .381936 
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